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Statement of the problem studied

The central problem was to understand fundamental properties of stochastic partial
differential equations. These included properties of level sets of the solutions of the
one-dimensional dimensional wave equation, regularity properties of solutions of the
two-dimensional wave equation driven by non-white Gaussian noise, and properties of
parabolic equations. These equations describe wave or heat propagation in random

media with random sources.
Additional problems examined were stochastic optimization problems that involve
switching between diffusions or random walks, and the use of random matrices as

models for studying the stability of large ecosystems.

Summary of results

THE ONE-DIMENSIONAL WAVE EQUATION. After a canonical transformation, the
solution of this equation is given by a process indexed by the nonnegative orthant
known as the Brownian sheet. Significant effort was devoted to the study of level sets
of this process. The main results, obtained jointly with John B. Walsh, concern the
local geometric structure of the level sets {W = o}, o > 0, where W = {W(s,t), s >
0, t > 0} is a standard Brownian sheet. More precisely, the focus has been on “mapping
out” this level set on a microscopic scale in the neighborhood of particular point: the
first hit (S, %) of the level set along a horizontal line.

We established that the point (.5, #o) is not on the boundary of any connected compo-
nent of {W > «}. Furthermore, it can be surrounded entirely by a curve in {W < a}.
Questions concerning the maximal thorn-shaped neighborhood that can be fit around
the segment ]0, S| x {to} while still avoiding {W > o} have been completely answered
by an integral test concerning the function 7 which defines the boundary of the thorn

T,, where
T, ={(s,t): 1<t <7(S—3s), 0<s < S}

Main result. Assuming only that s — 7(s)/s is increasing, we have shown that T’
is initially contained in {W < a} if and only if

0= () % <=

In the special case where

1\ 72 1\ 7P
T(s) =35 (log g) (log log —S-> ,

the integral I(7) is finite if and only if 8 > 2.

Many further results concerning the size, shape and spacing of components of {W >
o} in the neighborhood of (5,%) have also been obtained: see [8].
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Another direction of study concerned excursions of the Brownian sheet. The paper
[9] studies the restriction of W to a single connected component of {W > a}. This
is analogous in spirit to studying an excursion of Brownian motion. Here, geometric
properties of the component are of particular interest. In the neighborhood of (S, to),
the Brownian sheet can be written as

W(S —u,14+v/S) =1+ B(v) — b(s) — z(u,v/5), (1)

where B = {B(v), v > 0} is a standard Brownian motion started at the origin, b =
{b(u), u > 0} is a Bessel(3) process also started at the origin and independent of B, and
z is comparatively small. Therefore, it is natural to look at the set {B > b} = {(u,v):
B(v) > b(u)}, or equivalently, at excursions of the process Y (u,v) = B(v) — b(u).

Main results. The following questions concerning the set {8 > b} have been an-
swered: what is the probability that a point in the non-negative quadrant Ri belongs
to a particular connected component of {B > b}, and what is the expected area of this
component given the (maximal) height of the excursion of ¥ in this component. Ex-
plicit formulas for these quantities have been obtained. The formula for the expected
area is of the following type:

E{ area of component | height } = Y pn,
neN

where p, is an integral, over a particular simplex in 7 4 6(n — 1)-dimensional Eu-
clidean space, of functions f and g involving densities of functionals of two indepen-
dent Bessel(3) processes. These functions are expressed in terms of several series whose
general terms can be computed from the standard Gaussian density. Since these series
converge rapidly, they can be evaluated numerically. This numerical computation has
been carried out and agrees with results from direct simulations of the processes b and

B.

Also addressed in [9] is the question of comparing the asymptotic distribution of
the area of components of the Brownian sheet, suitably normalized, with the area of
components of { B > b}. A precise convergence statement is formulated and established
in this paper. It should be emphasized that this is the first result in the literature
concerning the area of excursions of the Brownian sheet.

Further results. The results obtained above have motivated further ongoing work
that R.C. Dalang is currently pursuing and will be completed in the months to come.
In particular, in joint work with T. Mountford [6], the PI has shown that a curve in the
level set of the Brownian sheet must be nowhere-differentiable. This is the appropri-
ate analogue of a result of nowhere-differentiability of Brownian motion due to Paley,
Wiener and Zygmund [19]. On the other hand, Dvoretzky, Erdés and Kakutani [10]
proved a very fine result concerning the nonexistence of points of increase of Brow-
nian motion. In [5], T. Mountford and R.C. Dalang have shown that the analogous
statement for the Brownian sheet is false, namely, with probability one, there exist
monotone curves along which the Brownian sheet has points of increase.
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THE TWO-DIMENSIONAL WAVE EQUATION. Motivated by applications in atmo-
spheric science in which some models use random terms other than space-time white
noise, the two PI’s R.C. Dalang and N. Frangos have studied the wave equation

ug — Au = f(u) G(dt, dz), (2)

where G is a Gaussian random field with covariance given by (¢t — s)R(|z — y[), and
f is a bounded Lipschitz function. If R is bounded, then it is well known [18] that (2)
has a continuous solution, but if R(]z|) is unbounded in the neighborhood of the origin,
then the situation is much more delicate. While the linear form of (2) always has a
solution in the space of generalized processes, the questions arises as to what conditions
R(]|) must satisfy in order that the solution exist in the space of real-valued stochastic
processes. The PI’s have shown that (2) has a process-solution if and only if

/ u(lnl/u)R(u) du < oo.
o+
However, this stochastic process need not be continuous. Under the stronger condition

/ u'“R(u)du < oo for some ¢ > 0,
o+

the PI’s have shown in [4] that the process solution of (2) has a continuous version.
The case where G is a Lévy random measure is also of interest. In this case,

R.C. Dalang and graduate student Hou Qiang have shown for a natural class of Lévy

processes that for large class of domains, the solution to (2) has the germ-field Markov

property.

PARABOLIC EQUATIONS. Jointly with D. Nualart, R.C. Dalang has been studying
the space-time Markov property of the equation
—a—u(t ) — —aiu(t z) = f(u(t,z))W(dt, dz).
ot Oz2 " ’ ’
While significant effort has been devoted to this difficult problem and much progress
has been made, the main results are yet to be obtained and are the subject of continuing

work.

STABILITY OF ECOSYSTEMS. Jointly with H.M. Hastings and M.A. Schreiber,
N. Frangos has studied the stability of large ecosystems using random matrix models.
The evolution of certain ecosystems can often be described by a parabolic partial
differential equation of the form

éu(t ) = iz—u(t )+ W(dt, dz)

G\ T T O
Through discretization, this equation leads a system of stochastic differential equa-
tions with large random matrices and noise terms. A relationship between Lyapounov
stability and low variability of the ecosystem has been established.
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STOCHASTIC OPTIMIZATION. Research in this area has progressed on two fronts,
related to the monograph [2] and to the papers [1, 3], jointly with R. Cairoli. The
papers [1, 3] contain a complete solution to the following optimal switching problem,
first studied by Mandelbaum [16] and Mandelbaum, Shepp and Vanderbei [17] under
certain regularity assumptions. Consider two independent Brownian motions X! =
(X4,t' € Ry) and X% = (X},t* € Ry ) killed at the endpoints of the intervals [0, N*]
and [0, N?] respectively, where N' and N? are positive numbers. Imagine that an
observer can control the evolution of X! and X? separately, that is, can leave ¢! fixed
and let ¢2 increase or leave 2 fixed and let t! increase. The observer can switch from one
direction to the other at any time. This determines a process (X4, X3), (¢1,¢%) € R%)
which evolves in D = [0, N] x [0, N?]. Assume that the observer can choose the
switching strategy and the time at which the evolution ends, knowing that at that
time he will receive a reward which only depends on the state of the process. This
reward is represented by a non-negative real-valued payoff function f defined on D
which vanishes in the interior of D, and the objective is to maximize the expected
reward. The problem has a discrete-time analogue, in which the Brownian motions are

replaced by random walks.

Main result. The main result, obtained jointly by R. Cairoli and the proposer, is a
complete description of the solution to this optimal switching problem both in discrete
and in continuous time, under the minimal “almost necessary” regularity assumption on
the data, namely, no assumption in the discrete case and “f is upper-semicontinuous”
in the continuous case. This can be compared with the assumption of [17], namely
that the boundary data is twice continuously differentiable and strictly concave. The
methods used by R. Cairoli and the proposer are significantly different from those in
this reference, which relied on the so-called “Principle of Smooth Fit”. In the general
setting, this principle does not apply, since when the boundary data is not regular, the
“fit is not smooth”. We proposed a combinatorial solution in the discrete case, and a
limiting argument to extend this to the continuous case. The regions where the vertical
(resp. horizontal) control is optimal are described explicitly in terms of the boundary

data.

The monograph “Sequential stochastic optimization”. The monograph [2] presents
a unified mathematical theory of sequential stochastic optimization, with emphasis on
the problems of optimal stopping and control of stochastic processes in the presence of
incomplete information, together with several applications, including sequential statis-
tical testing involving several populations and the multi-armed bandit problem. Much
of the material presented here is either new or appears in a book for the first time.

The monograph demonstrates how the theory of multiparameter processes has proved
to be an excellent tool for formulating and solving optimal stopping and sequential con-
trol problems, as noticed by Mandelbaum [15] and pursued by El Karoul and Karatzas
[11, 12]. In sequential problems, where decisions are made in discrete time, processes
indexed by the integer lattice or other discrete partially ordered sets provide the frame-
work within which these problems can be given a rigorous mathematical formulation.




In contexts in which there are only finitely many states of nature, the optimization
problem usually reduces to a problem in combinatorial optimization, in which graph-
theoretic and integer programming methods are important (as in the paper [7]). The
discrete case on a general probability space covers many sampling problems, the multi-
armed bandit problem and stochastic scheduling problems.

New results contained in the monograph include: an extension to arrays of ex-

changeable random variables of a result of Krengel and Sucheston [13] concerning

linear embedding of arrays of independent variables; an extension of a criterion for
accessibility of stopping points in the plane to stopping points in IV 4 d > 1; and
a characterization of three-dimensional filtrations with respect to which all stopping
points are accessible. A very general control problem, sufficient to cover applications
in which information and costs depend on all prior actions and states of the system is
formulated and solved. A characterization of Markov controls is provided, correcting
a result of Lawler and Vanderbei [14]. And a detailed presentation of the optimal
switching problem in discrete time mentioned above is provided.
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